Search results for "Myelin Proteins"
showing 10 items of 19 documents
MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes.
2015
Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of Myelin Basic Protein (MBP) which is essential for myelin formation. The abundant Myelin-Associated Oligodendrocytic Basic Protein (MOBP) resembles MBP in s…
The matricellular protein SPARC supports follicular dendritic cell networking toward Th17 responses.
2011
Abstract Lymphnode swelling during immune responses is a transient, finely regulated tissue rearrangement, accomplished with the participation of the extracellular matrix. Here we show that murine and human reactive lymph nodes express SPARC in the germinal centres. Defective follicular dendritic cell networking in SPARC-deficient mice is accompanied by a severe delay in the arrangement of germinal centres and development of humoral autoimmunity, events that are linked to Th17 development. SPARC is required for the optimal and rapid differentiation of Th17 cells, accordingly we show delayed development of experimental autoimmune encephalomyelitis whose pathogenesis involves Th17. Not only h…
A novel plasmid DNA electroporation method allows transfection of murine DC.
2007
Under steady state conditions dendritic cells (DC) exert tolerogenic function, but acquire potent immunogenic function due to strong upregulation of costimulatory molecules and proinflammatory cytokines. In numerous studies the potential of modified DC to induce tolerance or immune reactions towards a distinct antigen has been demonstrated. However, DC are refractory to transfection with plasmid DNA by non-viral methods. In this study we have tested the suitability of a newly developed electroporation device to transfect immature murine bone-marrow derived DC (BM-DC). Transfected BM-DC expressed reporter molecules at considerable extent which renders this method suitable to perform all kind…
Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis.
2005
Abstract In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, immunization with myelin Ags leads to demyelination and paralysis. To investigate which molecules are crucial for the pathogenesis of EAE, we specifically assessed the roles of the death receptors Fas and TNF-R1. Mice lacking Fas expression in oligodendrocytes (ODCs) were generated and crossed to TNF-R1-deficient mice. To achieve specific deletion of a loxP-flanked fas allele in ODCs, we generated a new insertion transgene, expressing the Cre recombinase specifically in ODCs. Fas inactivation alone as well as the complete absence of TNF-R1 protected mice partially from EAE induced by the imm…
Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis
2008
T-cell recognition of autoantigens is important in the development of autoimmune disease. Now, Hartmut Wekerle and his colleagues demonstrate that organ-specific autoimmune responses may be driven by T cells that simultaneously respond to two different autoantigens found within the same target tissue. We describe here the paradoxical development of spontaneous experimental autoimmune encephalomyelitis (EAE) in transgenic mice expressing a myelin oligodendrocyte glycoprotein (MOG)-specific T cell antigen receptor (TCR) in the absence of MOG. We report that in Mog-deficient mice (Mog−/−), the autoimmune response by transgenic T cells is redirected to a neuronal cytoskeletal self antigen, neur…
Charcot-Marie-Tooth disease: Genetic and clinical spectrum in a Spanish clinical series
2013
Objectives: To determine the genetic distribution and the phenotypic correlation of an extensive series of patients with Charcot-Marie-Tooth disease in a geographically well-defined Mediterranean area. Methods: A thorough genetic screening, including most of the known genes involved in this disease, was performed and analyzed in this longitudinal descriptive study. Clinical data were analyzed and compared among the genetic subgroups. Results: Molecular diagnosis was accomplished in 365 of 438 patients (83.3%), with a higher success rate in demyelinating forms of the disease. The CMT1A duplication (PMP22 gene) was the most frequent genetic diagnosis (50.4%), followed by mutations in the GJB1…
Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells.
2010
Background Modifications on specific histone residues and DNA methylation play an essential role in lineage choice and cellular reprogramming. We have previously shown that histone modifications or combinatorial codes of transcription factors (TFs) are critical for the differentiation of multipotential progenitors into myelinating oligodendrocytes. In this study we asked whether combining global manipulation of DNA methylation and histone acetylation together with the expression of oligodendrocyte- specific TFs, was sufficient to switch the identity of fibroblasts into myelin gene-expressing cells. Methodology/Principal Findings Transfection of six oligodendrocyte-specific TFs (Olig1, Olig2…
Dejerine-Sottas neuropathy associated with De Novo S79P mutation of the peripheral myelin protein 22 (PMP22) gene
1998
TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment.
2015
The adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice. The present study aims to evaluate whether intermittent ethanol treatment in adolescence promotes TLR4-dependent pro-inflammatory processes, leading to myelin and synapti…
Involvement of TLR4 in the long-term epigenetic changes, rewarding and anxiety effects induced by intermittent ethanol treatment in adolescence
2016
Studies in humans and experimental animals have demonstrated the vulnerability of the adolescent brain to actions of ethanol and the long-term consequences of binge drinking, including the behavioral and cognitive deficits that result from alcohol neurotoxicity, and increased risk to alcohol abuse and dependence. Although the mechanisms that participate in these effects are largely unknown, we have shown that ethanol by activating innate immune receptors, toll-like receptor 4 (TLR4), induces neuroinflammation, impairs myelin proteins and causes cognitive dysfunctions in adolescent mice. Since neuroimmune signaling is also involved in alcohol abuse, the aim of this study was to assess whethe…